
Relational DB,
SQL,

Efficient Design
& JDBC

CSC 631/831, Spring 2013

Dr. Ilmi Yoon

Topics Covered

• Database Design

• Normalization

• De-Normalization

• Primary key, indexing

• SQL

• Stored Procedures

• JDBC

Database Design

• The process of producing a
detailed data model of a database.

• Logical design of the base data
structures used to store the data.

• Accurate design is crucial to the
operation of a reliable and efficient
information system.

• How data is stored and how that data is
related.

Database Design

Problems Resulting from Poor Design

• The database and/or application may
not function properly.

• Data may be unreliable or inaccurate.

• Performance may be degraded.

• Flexibility may be lost.

Database Design

The process of doing database design generally consists
of a number of steps which will be carried out by the
database designer:
• Determine the purpose of your database

• Find and organize the information required

• Divide the information into tables

• Turn information items into columns

The design process consists of the following steps:

1)Determine the purpose of your database - This
is the simple process which helps you to decide
what functionality you need from your application.

The first method for planning for a database is to
simply brainstorm, on paper or otherwise,
concerning what the database will need to store,
and what the application will need out of it.

The goal is to start with a general and complete
view, and narrow down.

2) Find and organize the information
required -

Collect all of the types of information you
might want to record in the database, such
as user’s information and product ID.
In web applications like a online video store
is necessary to store the customer id, the
information about the membership duration,
membership charges etc.

The type of information you want to save in
the database entirely depends in the
application you are developing.

3) Divide the information into tables -

Divide your information items

into major entities or subjects, such as
Products or Orders. Each subject then
becomes a table.

Example:

A student tracking database would probably include the following

entities:

Students – who is the database keeping track of

Courses – which courses are available

Classes – which classes are available

Instructors – who is teaching the courses

Schedules – putting students into classes

4) Turn information items into columns -
Decide what information

you want to store in each table. Each item
becomes a field, and is displayed as a
column in the table.

The students table would include:

Student ID

Last name

First name

Address

City

State

Zip

5) Specify primary keys - Choose each table’s primary key.
The primary key is a column that is used to uniquely

identify each row.

An example might be Product ID or Order ID.

A foreign key is a referential constraint between two tables.[

Say we have two tables, a CUSTOMER table that includes all
customer data, and an ORDER table that includes all customer
orders. The intention here is that all orders must be associated

with a
customer that is already in the CUSTOMER table. To do this,

we will
place a foreign key in the ORDER table and have it relate to the
primary key of the CUSTOMER table.

http://en.wikipedia.org/wiki/Foreign_key

6) Set up the table relationships -
Look at each table and decide how the data in one table is
related

to the data in other tables. Add fields to tables or create new
tables

to clarify the relationships, as necessary.
The relationships can be developed between entities by looking

at common data. Relationships fall into three basic
categories:

One to one, One to many, Many to many

After the set up of different entities for each subject in the
database, you need a way of telling the database how to bring
that

information back together again. The first step in this
process is to

define relationships between your entities.

A relationship works by matching data in key attributes. In most

cases, matching attributes are the primary key from one table, which

provides a unique identifier for each record, and a foreign key in the

other table. For example, key attributes such as the student ID,

course ID, and class ID can relate student, class, and course entities.

• A one-to-many relationship

A one-to-many relationship is the most common type of

relationship. In a one-to-many relationship, an entity in Table A can

have many matching entities in Table B, but a entity in Table B has

only one matching entity in Table A.

• A many-to-many relationship

In a many-to-many relationship, an entity in Table A can have many

matching entities in Table B, and a record in Table B can have many

matching entities in Table A. This type of relationship is only possible

by defining a third entity (called a junction) whose primary key

consists of two attributes including the foreign keys from both

Tables A and B. A many-to-many relationship is really two one-to-

many relationships with a third entity.

A one-to-one relationship:

In a one-to-one relationship, each record in Table A can have only one

matching entity in Table B, and each record in Table B can have only

one matching entity in Table A. This type of relationship is not

common, because most information related in this way would be in

one entity. You might use a one-to-one relationship to divide a table

with many attributes, to isolate part of a table for security reasons,

or to store information that applies only to a subset of the main

entity.

Refine the Design

• Check primary keys

• Check the table relationships

• Apply the normalization rules

Un-normalized Design

• Redundant Data

• Modification Anomalies
Update Anomaly

Deletion Anomaly

Insertion Anomaly

Redundant Data

Prod

ID
Description Supplier Address City Region Country

34
Sasquatch

Ale

Bigfoot

Breweries

3400 - 8th

Avenue Bend OR USA

27
Schoggi

Schokolade

Heli

Süßwaren

GmbH

Tiergarten

straße 5
Berlin Germany

 Suppose you wanted to add another Item for
same supplier Bigfoot Breweries?

37
Lumberman

's Lager

Bigfoot

Breweries

3400 -

8th

Avenue

Bend OR USA

Update Anomaly

• Imagine the issues surrounding
modifications of hundreds of rows of
data for one supplier.

Prod

ID
Description Supplier Address City Region Country

34
Sasquatch

Ale

Bigfoot

Breweries

3400 - 8th

Avenue Bend OR USA

27
Schoggi

Schokolade

Bigfoot

Breweries

3400 - 8th

Avenue Bend OR USA

Deletion Anomaly

• We decide to delete the row 34 (the
only item from Bigfoot).

• A deletion anomaly means that we lose
more information than we want.

Prod

ID
Description Supplier Address City Region Country

34
Sasquatch

Ale

Bigfoot

Breweries

3400 - 8th

Avenue Bend OR USA

27
Schoggi

Schokolade

Heli

Süßwaren

GmbH

Tiergarten

straße 5
Berlin Germany

Insertion Anomaly

• You want to add a new supplier,
StarStruck (no specific item yet).

Prod

ID
Description Supplier Address City Region Country

34
Sasquatch

Ale

Bigfoot

Breweries

3400 - 8th

Avenue Bend OR USA

27
Schoggi

Schokolade

Heli

Süßwaren

GmbH

Tiergarten

straße 5
Berlin Germany

?? ????? StarStruck
101

Mariposa
Seattle WA USA

Normalization

• The process of organizing data to minimize
redundancy is called normalization.

• Edgar F. Codd, the inventor of the
relational model, introduced the concept of
normalization.

– First Normal Form
– Second Normal Form
– Third Normal Form
– Boyce Codd Normal Form
– Fourth Normal Form
– Fifth Normal Form
– Sixth Normal Form

• Apply the normalization rules - Apply the
data normalization rules to see if your
tables are structured correctly. Make
adjustments to the tables

Database normalization is the process of
organizing the fields and tables of
a relational database to minimize
redundancy and dependency.

Normalization usually involves dividing
large tables into smaller (and less
redundant) tables and defining
relationships between them.

Objectives of Normalization

• To permit data to be queried.

• To free insertion, update and deletion
dependencies.

• To reduce the need for restructuring.

• To make the data model more
informative to users.

• To make the collection of relations
neutral to the query statistics.

First Normal Form

• Table has a primary key

• Table has no repeating groups

Let us consider a table:

After having the look at the table, we found that
this table has some problems. The problems
include that the table does not scale well, it does
not provide data integrity and it is not efficient
with storage.

Title Author1 Author2 ISBN Subject Pages Publisher

Database

System

Concepts

Abraham

Silberschat

z

Henry F.

Korth

007295886

3

MySQL,

Computers

1168 McGraw-Hill

Operating

System

Concepts

Abraham

Silberschat

z

Henry F.

Korth

0471694665 Computers 944 McGraw-Hill

According to the First Normal Form , the table has two violations:
• The table has more than one author field,
• The Subject field contains more than one piece of information.

With more than one value in a single field, it would be very difficult
to search for all books on a given subject.

So we refine the table as:

Title Author ISBN Subject Pages Publisher

Database System

Concepts

Abraham

Silberschatz

0072958863 MySQL 1168 McGraw-Hill

Database System

Concepts

Henry F.

Korth

0072958863 Computers 1168 McGraw-Hill

Operating

System Concepts

Henry F.

Korth

0471694665 Computers 944 McGraw-Hill

Operating

System Concepts

Abraham

Silberschatz

0471694665 Computers 944 McGraw-Hill

We, now have two rows of the same book which means we are violating
the second form.

Second Normal Form:

• Table must be in First Normal Form

• Remove vertical redundancy: The same value should not repeat
across rows

A better solution to the problem would be to separate the data into
separate tables- an Author table and a Subject table to store our
information, removing that information from the Book table:

Subject table: Author table:

Book Table:

Subject_ID Subject

1 MySQL

2 Computers

Author_ID Last Name First Name

1 Silberschat

z

Abraham

2 Korth Henry

ISBN Title Pages Publisher

0072958863 Database System Concepts 1168 McGraw-Hill

0471694665 Operating System Concepts 944 McGraw-Hill

Each table has a primary key, used for joining tables together when
querying the data. A primary key value must be unique with in the
table (no two books can have the same ISBN number), and a primary
key is also an index, which speeds up data retrieval based on the
primary key.

Now to define relationships between the tables:

Book_author Table:

Book_subject Table:

ISBN Author_ID

0072958863 1

0072958863 2

0471694665 1

0471694665 2

ISBN Subject_ID

0072958863 1

0072958863 2

0471694665 2

As the First Normal Form deals with redundancy of data
across a horizontal row, Second Normal Form (or 2NF)
deals with redundancy of data in vertical columns.

The normal forms are progressive, so to achieve Second
Normal Form, the tables must already be in First Normal
Form.

The Book Table will be used for the 2NF example

Book table:

Publisher Table: Publisher_ID Publisher Name

1 McGraw-Hill

ISBN Title Pages Publisher_ID

0072958863 Database System Concepts 1168 1

0471694665 Operating System Concepts 944 1

Here there is one-to-many relationship between the book
table and the publisher. A book has only one publisher, and
a publisher will publish many books. When we have a one-
to-many relationship, we place a foreign key in the Book
Table, pointing to the primary key of the Publisher Table.

Third normal form (3NF) requires

• Table must be in Second Normal Form

• All columns must relate directly to the primary key

• If your table is 2NF, there is a good chance it is 3NF

Impact of Normalization

• Greater overall database organization

• Reduction of redundant data

• Data consistency within the database

• A much more flexible database design

• A better handle on database security

• Faster sorting and index creation.

• Fewer indexes per table, which improves
the performance of INSERT, UPDATE,
and DELETE statements.

Impact of Normalization

• Normalization simplifies updates, but
reads are more common!

User Table

Name Address Line 1 State

XYZ ABC USA

123 DEF USA

Denormalization

• The process of attempting to
optimize the read performance of a
database by adding redundant data
or by grouping data.

• Utilize both the normalized and
denormalized approaches depending
on situations.

DENORMALIZATION:

• The process of attempting to optimize the read
performance of a database by adding redundant data or
by grouping data.

• Utilize both the normalized and denormalized
approaches depending on situations.

Denormalization:

• Use with caution

• Normalize first, then de-normalize

• Use only when you cannot optimize

• Try temp tables, UNIONs, VIEWs, subselects first

DATABASE INDEX-
AN IMPORTANT CONCEPT IN DATABASE DESIGN:
Why is it needed?

When data is stored on disk based storage devices, it is stored as
blocks of data. These blocks are accessed in their entirety, making
them the atomic disk access operation. Disk blocks are structured in
much the same way as linked lists; both contain a section for data, a
pointer to the location of the next node (or block), and both need
not be stored contiguously.
Due to the fact that a number of records can only be sorted on one
field, we can state that searching on a field that isn’t sorted requires
a Linear Search which requires N/2 block accesses, where N is the
number of blocks that the table spans. If that field is a non-key field
(i.e. doesn’t contain unique entries) then the entire table space must
be searched at N block accesses.

What is Indexing?
Indexing is a way of sorting a number of records on

multiple fields.

Creating an index on a field in a table creates another data
structure which holds the field value, and pointer to the
record it relates to.

This index structure is then sorted, allowing Binary
Searches to be performed on it.

Whereas with a sorted field, a Binary Search may be used, this has

log2 N block accesses. Also since the data is sorted given a non-key

field, the rest of the table doesn’t need to be searched for duplicate

values, once a higher value is found. Thus the performance increase

is substantial.

When indexing should be used?

Since indexes are only used to speed up the searching for a
matching field within the records, it stands to reason that
indexing fields used only for output would be simply a waste of
disk space and processing time when doing an insert or delete
operation.

Database systems usually implicitly create an index on a set of

columns declared PRIMARY KEY, and some are capable of using an

already existing index to police this constraint. Many database

systems require that both referencing and referenced sets of

columns in a FOREIGN KEY constraint are indexed, thus improving

performance of inserts, updates and deletes to the tables

participating in the constraint.

JOINS:

• Joining data together is one of the most significant
strengths of a relational database.

• Joins allow database users to combine data from one
table with data from one or more other tables as long as
they are relations.

• A join condition is usually used to limit the combinations
of table data to just those rows containing columns that
match columns in the other table.

• Most joins are “equi-joins” where the data from a
column in one table exactly matches data in the column
of another table.

INNER JOINS:

An inner join (sometimes called a simple join) is a join of two or

more tables that returns only those rows that satisfy the join

condition.

• Traditional inner joins look for rows that match rows in the
other table(s), i.e. to join two tables based on values in one
table being equal to values in another table

• Also known as equality join, equijoin or natural join

• Returns results only if records exist in both tables

Suppose you have two tables, with a single column each, and data as
follows:
A B
- -
1 3
2 4
3 5
4 6
Note that (1,2) are unique to A, (3,4) are common, and (5,6) are unique to
B.

Inner join
An inner join using either of the equivalent queries gives the intersection
of the two tables, i.e. the two rows they have in common.
select * from a INNER JOIN b on a.a = b.b; select a.*,b.* from
a,b where a.a = b.b;

a | b
--+--
3 | 3
4 | 4

Left outer join
A left outer join will give all rows in A, plus any common rows in B.
select * from a LEFT OUTER JOIN b on a.a = b.b; select a.*,b.* from a,b
where a.a = b.b(+);
a | b
--+-----
1 | null
2 | null
3 | 3
4 | 4

Full outer join
A full outer join will give you the union of A and B, i.e. all the rows in A and all the
rows in B. If something in A doesn't have a corresponding datum in B, then the B
portion is null, and vice versa.
select * from a FULL OUTER JOIN b on a.a = b.b;

a | b
-----+-----

1 | null
2 | null
3 | 3
4 | 4

null | 6
null | 5

Structured Query Language
(SQL)

• SQL overview

• SQL keywords

SQL keyword Desc rip tion

SELECT Select (retrieve) fields from one or more tables.

FROM Tables from which to get fields. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved.
GROUP BY Criteria for grouping records.

ORDER BY Criteria for ordering records.
INSERT INTO Insert data into a specified table.
UPDATE Update data in a specified table.
DELETE FROM Delete data from a specified table.

Fig. 8.12 SQL query keywords.

Basic SELECT Query

• Simplest format of a SELECT query
– SELECT * FROM tableName

•SELECT * FROM authors

• Select specific fields from a table
– SELECT authorID, lastName FROM
authors

authorID lastName

1 Deitel

2 Deitel

3 Nieto

4 Santry

Fig. 8.13 authorID and lastName from the authors tab le.

WHERE Clause

• specify the selection criteria
– SELECT fieldName1, fieldName2, … FROM

tableName WHERE criteria
• SELECT title, editionNumber, copyright

FROM titles

WHERE copyright > 1999

• WHERE clause condition operators
– <, >, <=, >=, =, <>
– LIKE

• wildcard characters % and _

WHERE Clause (Cont.)

•SELECT authorID, firstName, lastName

FROM authors

WHERE lastName LIKE ‘D%’

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

Fig. 8.15 Authors whose last name sta rts with D from the authors tab le.

WHERE Clause (Cont.)

•SELECT authorID, firstName, lastName

FROM authors

WHERE lastName LIKE ‘_i%’

authorID firstName lastName

3 Tem Nieto

Fig. 8.16 The only author from the authors tab le whose last name

c onta ins i as the sec ond letter.

ORDER BY Clause

• Optional ORDER BY clause
– SELECT fieldName1, fieldName2, … FROM

tableName ORDER BY field ASC

– SELECT fieldName1, fieldName2, … FROM
tableName ORDER BY field DESC

• ORDER BY multiple fields
– ORDER BY field1 sortingOrder, field2

sortingOrder, …

• Combine the WHERE and ORDER BY clauses

ORDER BY Clause (Cont.)

•SELECT authorID, firstName, lastName

FROM authors

ORDER BY lastName ASC

authorID firstName lastName

2 Paul Deitel

1 Harvey Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.17 Authors from tab le authors in asc end ing order by lastName.

ORDER BY Clause (Cont.)

•SELECT authorID, firstName, lastName

FROM authors

ORDER BY lastName DESC

authorID firstName lastName

4 Sean Santry

3 Tem Nieto

2 Paul Deitel

1 Harvey Deitel

Fig. 8.18 Authors from tab le authors in desc end ing order by lastName.

ORDER BY Clause (Cont.)

•SELECT authorID, firstName, lastName

FROM authors

ORDER BY lastName, firstName

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.19 Authors from tab le authors in asc end ing order by lastName

and by firstName.

ORDER BY Clause (Cont.)

•SELECT isbn, title, editionNumber,
copyright, price
FROM titles WHERE title LIKE ‘%How to Program’

ORDER BY title ASC

isbn title edition-

Number

copy-

right

price

0130895601 Advanced Java 2 Platform How to Program 1 2002 69.95

0132261197 C How to Program 2 1994 49.95

0130895725 C How to Program 3 2001 69.95

0135289106 C++ How to Program 2 1998 49.95

0130895717 C++ How to Program 3 2001 69.95

0130161438 Internet and World Wide Web How to

Program
1 2000 69.95

0130284181 Perl How to Program 1 2001 69.95

0134569555 Visual Basic 6 How to Program 1 1999 69.95

0130284173 XML How to Program 1 2001 69.95

013028419x e-Business and e-Commerce How to

Program
1 2001 69.95

Fig. 8.20 Books from tab le titles whose title ends with How to Program

in asc end ing order by title.

Merging Data from Multiple
Tables: Joining

• Join the tables
– Merge data from multiple tables into a single

view
– SELECT fieldName1, fieldName2, …

FROM table1, table2
WHERE table1.fieldName = table2.fieldName

– SELECT firstName, lastName, isbn
FROM authors, authorISBN
WHERE authors.authorID =

authorISBN.authorID
ORDER BY lastName, firstName

Merging Data from Multiple
Tables: Joining (Cont.)

firstName lastName isbn firstName lastName isbn

Harvey Deitel 0130895601 Harvey Deitel 0130284173

Harvey Deitel 0130284181 Harvey Deitel 0130829293

Harvey Deitel 0134569555 Paul Deitel 0130852473

Harvey Deitel 0130829277 Paul Deitel 0138993947

Harvey Deitel 0130852473 Paul Deitel 0130125075

Harvey Deitel 0138993947 Paul Deitel 0130856118

Harvey Deitel 0130125075 Paul Deitel 0130161438

Harvey Deitel 0130856118 Paul Deitel 013028419x

Harvey Deitel 0130161438 Paul Deitel 0139163050

Harvey Deitel 013028419x Paul Deitel 0135289106

Harvey Deitel 0139163050 Paul Deitel 0130895717

Harvey Deitel 0135289106 Paul Deitel 0132261197

Harvey Deitel 0130895717 Paul Deitel 0130895725

Harvey Deitel 0132261197 Tem Nieto 0130284181

Harvey Deitel 0130895725 Tem Nieto 0130284173

Paul Deitel 0130895601 Tem Nieto 0130829293

Paul Deitel 0130284181 Tem Nieto 0134569555

Paul Deitel 0130284173 Tem Nieto 0130856118

Paul Deitel 0130829293 Tem Nieto 0130161438

Paul Deitel 0134569555 Tem Nieto 013028419x

Paul Deitel 0130829277 Sean Santry 0130895601

Fig. 8.21 Authors and the ISBN numbers for the books they have written in

asc end ing order by lastName and firstName.

INSERT INTO Statement

• Insert a new record into a table
– INSERT INTO tableName (fieldName1,

… , fieldNameN)

VALUES (value1, … , valueN)
•INSERT INTO authors (firstName,

lastName)

VALUES (‘Sue’, ‘Smith’)

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Sue Smith

Fig. 8.22 Table Authors a fter an INSERT INTO opera tion to add a rec ord .

UPDATE Statement

• Modify data in a table
– UPDATE tableName

SET fieldName1 = value1, … , fieldNameN =
valueN

WHERE criteria
• UPDATE authors

SET lastName = ‘Jones’

WHERE lastName = ‘Smith’ AND firstName = ‘Sue’

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Sue Jones

Fig. 8.23 Table authors a fter an UPDATE opera tion to c hange a rec ord .

DELETE FROM Statement

• Remove data from a table
– DELETE FROM tableName WHERE

criteria
•DELETE FROM authors

WHERE lastName = ‘Jones’ AND
firstName = ‘Sue’

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.24 Table authors a fter a DELETE opera tion to remove a rec ord .

Stored Procedure

• A stored procedure is a subroutine
available to applications accessing a
relational database system.

• A procedure can be stored in the
database as a database object for
repeated execution

• Stored procedure can return multiple
values using the OUT parameter or
return no value at all.

Benefits of Stored Procedure

• Precompiled execution

• Reduced client/server traffic

• Efficient reuse of code and
programming abstraction.

• Enhanced security controls.

Stored Procedure

<SYNTAX>

CREATE [OR REPLACE] PROCEDURE <PROCEDURE NAME>

([MODE 1] argument 1 datatype-1,

[MODE 2] argument 2 datatype-2,

..………………

BEGIN

Body

END

Stored Procedure

DELIMITER //

CREATE PROCEDURE GetAllProducts()

BEGIN

SELECT * FROM products;

END //

DELIMITER ;

Procedure Execution
Call GetAllProducts()

Stored Procedure

There are three types of modes for
arguments
 IN

 OUT

 IN OUT

JDBC

• Database
– Collection of data

• DBMS
– Database management system
– Storing and organizing data

• SQL
– Relational database
– Structured Query Language

• JDBC
– Java Database Connectivity
– JDBC driver

Points to remember

• JDBC Driver – Load the proper driver

• DB connection

• Statement

• Executing the statements

• ResultSet

• Close – close connection Or connectionPool

• PreparedStatement

Relational-Database Model

• Relational database
– Table

– Record

– Field, column

– Primary key
• Unique data

• SQL statement
– Query

– Record sets

Manipulating Databases with
JDBC

• Connect to a database

• Query the database

• Display the results of the query

Connecting to and Querying a
JDBC Data Source

• DisplayAuthors
– Retrieves the entire authors table

– Displays the data in a JTextArea

public class SQLGatewayServlet extends HttpServlet{

private Connection connection;

public void init() throws ServletException{
try{

Class.forName("org.gjt.mm.mysql.Driver");
String dbURL = "jdbc:mysql://localhost/murach";
String username = "root";
String password = "";
connection = DriverManager.getConnection(

dbURL, username, password);
}

Create Connection at Init()

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException{

String sqlStatement = request.getParameter("sqlStatement");
String message = "";

try{ Statement statement = connection.createStatement();
sqlStatement = sqlStatement.trim();
String sqlType = sqlStatement.substring(0, 6);
if (sqlType.equalsIgnoreCase("select")){

ResultSet resultSet = statement.executeQuery(sqlStatement);
// create a string that contains a HTML-formatted result set
message = SQLUtil.getHtmlRows(resultSet);

} else {
int i = statement.executeUpdate(sqlStatement);
if (i == 0) // this is a DDL statement

message = "The statement executed successfully.";
else // this is an INSERT, UPDATE, or DELETE statement

message = "The statement executed successfully.
"
+ i + " row(s) affected.";

}
statement.close();

}
From JDBC Example at course web page

public void init() throws ServletException{
connectionPool = MurachPool.getInstance();

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException{

Connection connection = connectionPool.getConnection();

String firstName = request.getParameter("firstName");
String lastName = request.getParameter("lastName");
String emailAddress =

request.getParameter("emailAddress");
User user = new User(firstName, lastName, emailAddress);

HttpSession session = request.getSession();
session.setAttribute("user", user);

String message = "";

Processing Multiple ResultSets
or Update Counts

• Execute the SQL statements

• Identify the result type
– ResultSets

– Update counts

• Obtain result
– getResultSet

– getUpdateCount

Prepared Statement
• Sometimes prepared statement is more convenient and

more efficient for sending SQL statements to the database.
• When to use PreparedStatement

– When you want to execute a Statement object many times,
it will normally reduce execution time to use a
PreparedStatement object instead

• The main feature of a PreparedStatement object is that
unlike a Statement object, it is given an SQL statement
when it is created. The advantage to this is that in most
cases, this SQL statement will be sent to the DBMS right
away, where it will be compiled. As a result, the
PreparedStatement object contains not just an SQL
statement, but an SQL statement that has been
precompiled.

• This means that when the PreparedStatement is executed,
the DBMS can just run the PreparedStatement's SQL
statement without having to compile it first.

PreparedStatement example

try{
String _querySelect =
“SELECT * FROM MOVIE WHERE title like ?”;

preStatement = connection.prepareStatement(
_querySelect,
ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

}

Prepared Statement Example
• https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/1938

Connection connection = DriverManager.getConnection("jdbc:sapdb://" +
Server + "/" + Database, User, Password);

// Preparing the query to be executed
preStatement = connection.prepareStatement(

"insert into addimage values(?,?,?)");

// Setting the actual values in the query
preStatement.setString(1,fileId);
preStatement.setString(2,fileDes);

// A file reader to get the contents of image
FileInputStream fi=new FileInputStream(fileName);
byte[] Img= new byte[fi.available()+1];
fi.read(Img);
preStatement.setBytes(3,Img);

// Executing the SQL Query
preStatement.execute();
System.out.println("Image Successfully inserted into MaxDB!");

https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/1938

JDBC 2.0 Optional Package
javax.sql

• Package javax.sql
– Included with Java 2 Enterprise Edition

• Interfaces in package javax.sql
– DataSource

– ConnectionPoolDataSource

– PooledConnection

– RowSet

Connection Pooling

• Database connection
– Overhead in both time and resources

• Connection pools
– Maintain may database connections

– Shared between the application clients

import util.MurachPool;

public class EmailServlet extends HttpServlet{

private MurachPool connectionPool;

public void init() throws ServletException{
connectionPool = MurachPool.getInstance();

}

public void destroy() {
connectionPool.destroy();

}
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException{

Connection connection = connectionPool.getConnection();

String firstName = request.getParameter("firstName");
String lastName = request.getParameter("lastName");
String emailAddress = request.getParameter("emailAddress");
User user = new User(firstName, lastName, emailAddress);

HttpSession session = request.getSession();
session.setAttribute("user", user);

